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This article describes the development and application of a streamlined air control and
response modeling system with a novel response surface modeling-linear coupled fitting
method and a new module to provide streamlined model data for PM2.5 attainment
assessment in China. This method is capable of significantly reducing the dimensions
required to establish a response surface model, as well as capturing more realistic response
of PM2.5 to emission changes with a limited number of model simulations. The newly
developed module establishes a data link between the system and the Software for Model
Attainment Test—Community Edition (SMAT-CE), and has the ability to rapidly provide
model responses to emission control scenarios for SMAT-CE using a simple interface. The
performance of this streamlined system is demonstrated through a case study of the
Yangtze River Delta (YRD) in China. Our results show that this system is capable of
reproducing the Community Multi-Scale Air Quality (CMAQ) model simulation results with
maximum mean normalized error < 3.5%. It is also demonstrated that primary emissions
make a major contribution to ambient levels of PM2.5 in January and August (e.g., more than
50% contributed by primary emissions in Shanghai), and Shanghai needs to have regional
emission control both locally and in its neighboring provinces to meet China's annual PM2.5

National Ambient Air Quality Standard. The streamlined system provides a real-time
control/response assessment to identify the contributions of major emission sources to
ambient PM2.5 (and potentially O3 as well) and streamline air quality data for SMAT-CE to
perform attainment assessments.
© 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
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Introduction

Fine particulate matter pollution (PM2.5) has been one of the
most important environmental pollution issues in China
recently due to its adverse influences on regional haze (Sun
et al., 2014; Zhao et al., 2013b), public health and global climate
change (Buonocore et al., 2014; Tai et al., 2010). According to
the air quality reports of the China National Environmental
Monitoring Centre (CNEMC), the monitored annual average
PM2.5 of most Chinese cities (China National Environmental
Monitoring Centre Centre(CNEMC), 2013) substantially ex-
ceeds the Grade II China National Ambient Air Quality
Standard (35 μg/m3) (Ministry of Environmental Protection of
the People's Republic of China, MEP, 2012). A large portion of
PM2.5 in China is attributable to anthropogenic emissions such
as gaseous precursors and primary PM emissions from power
plants, industrial & domestic sectors, and transportation (Dong et
al., 2014; Fu et al., 2013; Wang and Hao, 2012), especially for
primary PMemissions (Xing, 2011; Zhao et al., 2013a). To estimate
the response of PM2.5 to anthropogenic emissions under various
control strategies, air quality models are an effective and widely
used tool for attainment assessments in air qualitymanagement.
The Community Multi-scale Air Quality (CMAQ) model, as a
powerful air quality model tool, has been widely employed to
compare the efficacy of various emission control strategies in
China (Streets et al., 2007; Wang et al., 2010; Zhao et al., 2013b)
and other countries (Appel et al., 2012; Byun and Schere, 2006;
Chemel et al., 2014). However, it is extremely time-consuming
forCMAQ toestimate a large number of controlmeasures due to
the high computational costs and the complicated nature of the
required emission/ meteorology inputs and processing (Fann et
al., 2012; Foley et al., 2014; Xing et al., 2011). Therefore, a software
package called Response Surface Model—Visualization Analysis
Tool (RSM-VAT) has been developed to address this issue.

RSM-VAT is an innovative reduced form of air quality
model, which has been continually improved and applied
successfully in testing and evaluation for PM2.5 (US EPA, 2006b;
Zhao et al., 2014; Zhu et al., 2015) and ozone (US EPA, 2006a;
Xing et al., 2011). However, there are two limitations in
RSM-VAT. One is that the errors of RSM prediction performances
sharply increase with the increase of variables since the sample
space is greatly increased with the increase of dimensions (Xing
et al., 2011). It requires many thousands of CMAQ model runs
(samples) to build a reliable RSM prediction when the number of
variables is more than a certain threshold (e.g., 56), which is
unrealistic for CMAQ (Appel et al., 2011). There is also an
assumption in RSM-VAT that all control variables involved in
building the response surface model have a nonlinear response
to pollutants (e.g., PM2.5). This assumption is not appropriate for
primary PM2.5. PM2.5 is a mixture consisting of nonlinear
contributions from gaseous precursors (e.g., SO2, NH3 and NOx)
and linear contributions from primary/direct PM2.5 emission
sources (Dong et al., 2014; Li et al., 2014; Xing, 2011). In China,
especially in the YRD region, the proportion of contributions
from total primary PM2.5 emissions can be as high as 46% (Zhao
et al., 2014). To overcome these limitations, we improve the
previous version of RSM-VAT with a new RSM-Linear coupled
fitting method. The updated response modeling system signif-
icantly reduces the dimensions required to establish a response
surface model and captures the realistic response of fine
particles to both primary and secondary source changes with
a reasonable number of model simulations.

The Software for Model Attainment Test—Community
Edition (SMAT-CE) is a powerful regulatory model tool to
demonstrate the air quality attainment for emission control
strategies by combining monitoring data with modeled data
from CMAQ or from the Comprehensive Air Quality Model
with extensions (CAMx) (US EPA, 2007; Wang et al., 2015).
However, the model output format cannot be directly used in
SMAT-CE for efficient attainment assessment. The RSM-VAT
can address this challenge, but these two software tools are
operated in a stand-alone fashion and the SMAT-CE is unable
to identify the griddedmodel data fromRSM-VAT due to their
different data formats. As such, amodule for outputting gridded
model data to SMAT-CE in the updated response modeling tool
(RSM-VAT) was developed. The module establishes a data link
between this updated RSM tool and SMAT-CE, which provides
streamlined model data for PM2.5 and O3 attainment assess-
ment. Finally, a case study on PM2.5 in the Yangtze River Delta
(YRD) was conducted for attainment assessments in this paper.
The streamlinedmodeling tool in this case study demonstrates
an innovative approach that could provide real-time control/
response assessment to identify the contributions of major
emission sources to ambient PM2.5 (and potentially O3 as well)
as well as streamline air quality data for SMAT-CE to perform
PM2.5 and O3 attainment assessments.
1. Methodology

Fig. 1 schematically shows the operation process of creating
RSM, validation, and outputting SMAT-CE formatted data for
PM2.5 attainment test assessment. Our previous study (Zhu et
al., 2015) has reported the creation of RSM with the method of
high-dimensional Kriging and functional design of RSM-VAT
in detail. Compared to the reported RSM-VAT (Zhu et al.,
2015), the main improvements of this version include (1) the
development of a RSM-Linear coupled fittingmethod for creating
a PM2.5 response surface model and (2) a new module for saving
gridded model data for SMAT-CE.

1.1. Control matrix design

Response surface modeling is a type of reduced-form modeling
using statistical techniques to relate a response variable (e.g.,
PM2.5) to a set of control variables that are of interest through the
design of complex multi-dimensional experiments. A control
matrix defines the multi-dimensional experiments consisting of
a set of emission control scenarios parameterized by control
variables. Here we select PM2.5 as our target pollutant. The
emissions of PM2.5 are categorized into 56 control variables based
on emission type and source category, including 32 gaseous PM2.5

precursor control variables and 24 primary PM2.5 control variables
(Table 1). The matrix is created by sampling the 56 control
variables in the design space. The sample values of these 56
control variables are set from 0 to 1.5. A control variable value
(emission ratio) of 1.5means the amount of the emission source/
factor increases by 50% compared to the level of the base year.
Fig. 2 shows an example of a final control matrix. The first N
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samples are generated by using Latin hypercube sampling (LHS)
(Hirabayashi et al., 2011) with the gaseous PM2.5 precursor control
variables. The size ofN is determined by the balance between the
validation error of the created RSM and the computation time of
CMAQ simulations (Foley et al., 2014; Zhu et al., 2015). The next n
single-fixed-factor samples are targeted to the primary PM2.5

control variables, which only reduce the emission of one primary
PM2.5 control variable to 0.25 at a time while keeping the others
unchanged. The control variable values in the final matrix are
applied to the base year emission inventory to form (N + n)
emission control scenarios for CMAQ simulations. These emis-
sion inventory variables, together with the meteorology and
other necessary data, are applied in CMAQ simulations to predict
the PM2.5 concentrationunder these control scenarios. TheCMAQ
simulations were run for two months, January and August
in 2010, due to their representativeness of typical winter and
summer climatology conditions (Zhang et al., 2012). More
information about CMAQ configuration, geophysical pro-
jection, meteorological, emission, and initial and boundary
condition inputs used for this analysis are described in
detail by Zhao et al. (2014). The Yangtze River Delta (YRD)
region (Fig. 3) was selected as the study domain because it is
the most populous and economically vigorous region in
China, with extensive air emissions (Fu et al., 2014; Li et al.,
2012).

1.2. RSM-Linear coupled fitting method

The steps of building an RSM for the non-linear response of
PM2.5, using the linear method to build up the response of
CMAQ simulations

PM2.5 Response Surface Model 

Base year emission inventory

Base year meteorological data

Emission sources selection

Emission control matrix

1. Control matrix design

Precursors control matrix Primary PM2.5 control matrix 

A

Response of PM2.5 to prima
PM2.5 emission changes

Response of PM2.5 to 
precursors emission changes

2. RSM-Linear coupled fitting method 

Latin hypercube sampling Fixed value

High-dimensional kriging func tion  Linear fitting function

Fig. 1 – Key operation process for development and application o
response surface modeling (RSM)-linear coupled fitting method f
major improvements compared to the previous version of respo
Attainment Test—Community Edition; CMAQ: Community Multi
PM2.5 to primary emission changes, and results validation, are
described below.

Step 1: Establish the response surface of PM2.5 to precursor
emission changes. A high-dimensional Kriging algorithm is
employed to establish the nonlinear response, as reported in a
previous publication (Zhu et al., 2015). The nonlinear response
of PM2.5 can be estimated efficiently by the created RSM using
N (=254) scenarios (Fig. 2). The RSM-predicted value of PM2.5

ambient concentration can be expressed by Eq. (1):

Cprec i; jð Þ ¼ RSMPM2:5 X1;X2; ⋯;X Fð Þ ð1Þ

where (X1, X2, ⋯, XF) represents the F precursor emission ratios,
e.g., X1 is the first precursor control variable emission ratio;
RSMPM2.5 represents the response surface of PM2.5 to precursor
emissions; andCprec(i,j) represents the RSM-predicted value of the
PM2.5 ambient concentration resulting from precursor emission
changes at grid cell (i,j) associatedwith the scenario (X1, X2, ⋯, XF).

Step 2: Establish the response of PM2.5 to primary PM2.5

emission changes. The changes in the ambient concentrationof
PM2.5 are directly affected by the emission changes of one
primary PM2.5 variable. For an additional scenario where only
one primary PM2.5 is disturbed and the others stay the same as
for the base case, the changed variable is regarded as the l
(1 ≤ l ≤ f) primary control variable. Its value changes from1 toXl.
According to the linear response of PM2.5 concentration to
primary PM2.5 emissions (Zhao et al., 2014), the contribution of
the l primary PM2.5 control variable to PM2.5 can be expressed as:

ΔCl i; jð Þ ¼ CNþl i; jð Þ−Cbase i; jð Þð Þ � 1−Xl

1−XNþl
ð2Þ
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Table 1 – Emissions control variables selected for this study.

Variable type Control variable Variable description Variable details

Gaseous precursor
variables

NOx_PP NOx power plant source emissions Eight variables in each of the 4 regions
(e.g., Shanghai, Jiangsu, Zhejiang and
other regions in the Yangtze River Delta
(YRD)). There are 8 × 4 = 32 gaseous
precursor control variables in total.

NOx_IN&DO NOx industrial and domestic source emissions
NOx_TR NOx transportation source emissions
SO2_PP SO2 power plant source emissions
SO2_IN&DO SO2 industrial and domestic source emissions
VOC_IN&DO Volatile organic carbon industrial and domestic source

emissions
VOC_TR Volatile organic carbon transportation source emissions
NH3_IN&DO NH3 industrial & domestic source emissions

Primary PM2.5

variables
PM2.5_PP PM2.5 directed power plant source emissions Six variables in each of the 4 regions.

There are 6 × 4 = 24 primary PM2.5 control
variables in total.

PM2.5_IN&DO PM2.5 directed industrial and domestic source emissions
PM2.5_TR PM2.5 directed transportation source emissions
PMC_PP PM coarse directed power plant source emissions
PMC_IN&DO PM coarse directed industrial and domestic source emissions
PMC_TR PM coarse directed transportation source emissions

PP: power plants; IN&DO: industry and domestic; TR: transportation.

72 J O U R N A L O F E N V I R O N M E N T A L S C I E N C E S 4 1 ( 2 0 1 6 ) 6 9 – 8 0
where ΔCl(i,j) is the change of PM2.5 concentration at grid cell (i,j)
resulting from the changes of the l primary control variable;
CN + l(i,j) is the CMAQ simulation value of the (N + l) scenario
(Fig. 2) at grid cell (i,j); Cbase (i,j) is the CMAQ simulation value of
the baseline scenario at grid cell (i,j); Xl is the l primary PM2.5

control variable emission, and XN + l is a constant (equal to 0.25)
of the l primary PM2.5 control variable emission in the (N + l)
scenario.

When the emissions of all primary PM2.5 variables vary
simultaneously, the changes of PM2.5 are calculated according
to the linear relationship between PM2.5 and primary PM2.5:

ΔC i; jð Þ ¼
Xf

l¼1

ΔCl i; jð Þ: ð3Þ

Step 3: Establish and validate the PM2.5 response surface
model. The PM2.5 concentrations in the target region can be
thought as the contributions of gaseous precursors and primary
F
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. ... ...
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Fig. 2 – Design of control matrix. F (=32) and f (=24) represent
the number of gaseous precursors and primary PM2.5 control
variables, respectively; N (=254) stands for one CMAQ base
case (the first row) and (N − 1) samples generated by Latin
hypercube sampling (LHS) method; and n (=24) represents
the sample number of single-fixed-factor scenarios in the
primary emission control matrix. Each sample represents an
emission control scenario.
PM2.5 emissions. Therefore, based on Eqs. (1) and (3), the final
RSM PM2.5 predicted value at grid cell (i,j) affected by the
changes of both precursors and primary PM2.5 emissions can be
expressed as:

Cpred i; jð Þ ¼ RSMPM2:5 X1;X2; ⋯;X Fð Þ þ
Xf

l¼1

ΔCl i; jð Þ: ð4Þ

BasedonEq. (4), the PM2.5 response surfacemodel is built. This
model is validated through out-of-sample validation (OOS) and
cross validation (CV). The RSM-predicted values are compared
with CMAQ “true” values and a standard set of model perfor-
mance evaluation metrics (e.g., bias, error) are computed. The
above CMAQ “true” values of PM2.5 and chemical components
A

D

B

C

Fig. 3 – Study domain and four cities of interest for this
study. A: Other cities, B: Shanghai, C: Southern Jiangsu, and
D: Northern Zhejiang.
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wereprovidedandvalidatedwith observational data byTsinghua
University. The CMAQ-observation validation results of normal-
ized mean biases (NMBs) range from −15% to 24% (Zhao et al.,
2014). When the RSM prediction error or bias exceeds acceptable
ranges, a certain amount of samples will be added for CMAQ
simulations until the error is within an acceptable range.

1.3. Emission reduction scenarios

Table 2 lists three emission reduction scenarios targeted on
several pollutants, i.e., NOx, SO2, NH3, and primary PM2.5. Since
VOC emissions have a minor effect on PM2.5 concentrations
due to the significant underestimation of secondary organic
aerosol formation in the current CMAQ model (Carlton et al.,
2010), we did not consider a VOC reduction scenario in this paper.
Case #1 focuses on the reduction of NOx, SO2, NH3, and primary
PM2.5 emissions outside of Shanghai. Case #2 represents the
emission reduction of the same pollutants as in Case #1 for
Shanghai. As documented in the literature (Wang and Hao,
2012;Wang et al., 2014a), emission controls in a single city are
not an effective way to realize the air quality standard,
because air pollution is a complex phenomenon and influ-
enced by both local emissions and regional transport from
neighboring areas. Therefore, we design Case #3 to represent
an emission reduction of the same pollutant emissions in
the entire YRD region. The emission ratios in these three
scenarios are in accordance with the maximum feasible
reduction described by Wang et al. (2014b).

1.4. Functional module for output model data to SMAT-CE

Since the gridded air quality model data from RSM-VAT
cannot be used directly as inputs for SMAT-CE due to data
format differences (e.g., projection), a functional module
named “Save to SMAT” is developed in RSM-VAT. Thismodule
implements the coordinate conversions and grid-related
computations, and then outputs the SMAT-CE formatted
data for attainment assessments.

In RSM-VAT, the model data are based on a Lambert
conformal conic (LCC) projection. The coordinates of each grid
cell are in the format of column and row indexes. In contrast,
SMAT-CE formatted model data require latitude and longitude
coordinates at the centroid of each grid cell. To get this coordinate
information, an open-source geographic information systems
(GIS) library (DotSpatial, http://dotspatial.codeplex.com/) is intro-
duced. The functionality of map projection transformations in
this library is extended into RSM-VAT to provide coordinate
conversion and then compute the latitude/longitude of each grid
cell in the modeling domain. After that, several data fields (e.g.,
grid cell ID) are added to the output gridded model file, which
include a grid cell ID, grid-cell values of PM2.5, and the model
month or quarter.

With this module, users only need to input the emission
control scenario and right-click on the pollutant spatial
distribution plot to select “Save to SMAT”, then the corre-
sponding SMAT-CE formatted gridded model data will be
exported in *.csv format. In this study, a base year and three
future years' gridded model files were derived from this
module and each model file consisted of two simulated
monthly average PM2.5 concentrations (January and August).
1.5. Air quality attainment assessment in SMAT-CE

SMAT-CE is primarily intended as a tool to implement the
modeled attainment tests for particulate matter (PM2.5), ozone
(O3) and regional haze (visibility). It statistically estimates a
future design value (DVF) at a specific site (a monitoring site or
grid cell) by using a base-year observational data and the
model data obtained from the base-year and future-year air
quality simulations. The model data of the base and future
years are used for calculating the ratio of the model's future to
base-year predictions at monitoring sites. The ratios are called
relative response factors (RRF). The DVF of pollutants is
estimated at monitoring sites by multiplying RRF locations
“near” each monitor by the base-year observation value. The
future-year design values are compared to the NAAQS. If all
future site-specific pollutant design values are less than or
equal to the concentration specified in the NAAQS, the test is
passed. A detailed description of this attainment methodol-
ogy and approach is available in the study by Wang et al.
(2015).

In this study, gridded model data for a base year and three
future years' scenarios, as well as base-year PM2.5 monitoring
data from Shanghai, were used as inputs for SMAT-CE. The
estimated results consist of (1) spatial distribution of future
year PM2.5 concentration and (2) future year PM2.5 concentra-
tions at the 10 national monitoring sites in Shanghai. The
first one was facilitated to evaluate the effectiveness of three
proposed emission reduction scenarios, while the other one
was applied to conduct PM2.5 NAAQS attainment testing at
Shanghai monitoring sites.
2. Results and discussion
2.1. Validation of RSM-Linear coupled fitting tool

RSM can reproduce the simulation results of CMAQ by
various validation methods (Zhu et al., 2015). The cross
validation (CV) results (available at http://www.abacas-dss.
com/) demonstrate the good performance of our created RSM
(including January and August) in the YRD with mean
normalized bias (MNB) < 1% and mean normalized error
(MNE) < 1%. Here, we concentrate on the validation of the
developed linear fitting algorithm. A set of 28 additional
scenarios are introduced to validate the performance of this
algorithm by out-of-sample (OOS) validation. The first 24
scenarios, corresponding to the 24 primary PM2.5 control
variables (cases 1–24), are single-fixed-factor samples where
only one control variable of primary PM2.5 changes from 0.25
to 0.50 at a time and the others remain the same as the base
case. The next 4 scenarios (cases 25–28) are generated
randomly by the LHS method, in which all primary PM2.5

control variables are changed simultaneously. The predicted
PM2.5 concentrations for these scenarios are compared to the
corresponding CMAQ simulation results using model evalu-
ation metrics (e.g., mean normalized bias). As shown in
Fig. 4a, the overall errors over these 28 scenarios were small
in both January and August, with the median value of 0%.
Only a few discrete points in August varied from −1.5% to

http://dotspatial.codeplex.com/
http://www.abacas-dss.com/
http://www.abacas-dss.com/


Table 2 – Emission control scenarios for the attainment of PM2.5 air quality standard.

Region Scenarios Emission control factors

NOx_PP NOx_IN&DO NOx_TR SO2_PP SO2_IN&DO NH3_IN&DO PM2.5_PP PM2.5_IN&DO PM2.5_TR

Other cities Case #1 0.28 0.28 0.25 0.41 0.26 0.55 0.23 0.19 0.13
Case #2 1 1 1 1 1 1 1 1 1
Case #3 0.28 0.28 0.25 0.41 0.26 0.55 0.23 0.19 0.13

Shanghai Case #1 1 1 1 1 1 1 1 1 1
Case #2 0.35 0.24 0.18 0.47 0.17 0.55 0.27 0.37 0.16
Case #3 0.35 0.24 0.18 0.47 0.17 0.55 0.27 0.37 0.16

Southern
Jiangsu

Case #1 0.24 0.26 0.24 0.42 0.25 0.55 0.22 0.21 0.14
Case #2 1 1 1 1 1 1 1 1 1
Case #3 0.24 0.26 0.24 0.42 0.25 0.55 0.22 0.21 0.14

Northern
Zhejiang

Case #1 0.27 0.28 0.19 0.34 0.25 0.55 0.16 0.28 0.14
Case #2 1 1 1 1 1 1 1 1 1
Case #3 0.27 0.28 0.19 0.34 0.25 0.55 0.16 0.28 0.14
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+1.5%. The performance statistics in January were slightly
lower than those in August because of the high PM2.5

concentrations in January. These results imply that the new
linear fitting algorithm performs well for these 24 primary
PM2.5 control variables.

Another 12 scenarios are generated using a LHS method to
further estimate the stability of the RSM-Linear coupled fitting
method through OOS validation, which consist of 8 scenarios
(cases 29–36) for validating the RSM technique and 4 scenarios
(cases 37–40) for validating the RSM-Linear coupled fitting
method. Compared to the 28 linear fitting algorithm validation
cases, the 8 scenarios (cases 29–36), where only the control
variables of gaseous precursors changed, had much more
fluctuation (Fig. 4b). This fluctuation may be attributable to the
instability of an RSM with a large number of dimensions. For
those scenarios (cases 37–40) where all control variables of both
gaseous precursors and primary PM2.5 changed simultaneously,
the overall errors and biases were relatively larger, mainly due
to the superposed influence of theRSM techniqueand the linear
fitting algorithm. Even so, the maximum MNB was within an
acceptable error of −3.32%. Here we choose Case #37, whose
MNB was the largest at −3.32% in August, to further investigate
the accuracy of this method. As shown in Fig. 5, the underes-
timation of Case #37 could be viewed clearly when we
compared the base case concentration reduction in Fig. 5b,
due to the amplified coordinate axis. The correlation coeffi-
cients of this case were larger than 0.99, indicating a perfect
agreement with CMAQ simulations. Summary statistics of the
prediction errors for all of the out-of-sample simulations (cases
1–40) are calculated and given in Table 3. The results show that
the mean values of the 6 statistical metrics were within ±
1% in both January and August, indicating that this coupled
method provides good accuracy compared to the CMAQ
simulations.

2.2. Analysis of primary emissions contributing to PM2.5 in
YRD

Policy makers can use updated RSM-VAT to identify the
emission source contributions from various regions and sec-
tors. Fig. 6 gives the accumulative contribution for the changes
of PM2.5 in four regions (Shanghai, Jiangsu, Zhejiang and Other
regions in the YRD) with a 30% reduction of all sources
in January and August. As shown in Fig. 6a, the total primary
PM2.5 emissions had a dominating contribution to PM2.5

concentration changes in the YRD region, accounting for 78%
and 55% of the PM2.5 change in January and August, respective-
ly. The local primary PM2.5 contributedmost significantly to the
PM2.5 change. Take Shanghai as an example, in January, nearly
6.0 μg/m3 (83%) of the PM2.5 concentration change was contrib-
utedby primary PM2.5 emissions, inwhich about 3.8 μg/m3 (53%)
came from local primary emissions. In August, the primary
PM2.5 emissions were responsible for a significant fraction of
PM2.5, although the proportion decreased compared to that of
January. These emissions accounted for approximately 4.0 μg/
m3 (59%) of the PM2.5 concentrations, including about 2.7 μg/m3

(39%) contributions from local emissions. The gaseous precur-
sors emitted from Zhejiang province had an obvious effect on
Shanghai due to the prevailing southeasterly winds in August.
The long-range-transported NOx from Zhejiang province will
react with the local NH3 in Shanghai to formnitrate in themore
strongly NH3-rich conditions in August (Zhao et al., 2014).
Therefore, the gradually increased NOx emissions from Zhe-
jiang havemore contribution to PM2.5 than SO2 compared to the
well-controlled SO2 emission since 2010 (Fu et al., 2013).
Compared to the twomonths' emission reduction in Shanghai,
the reduction was much more effective in January. These
results are similar for other regions such as Zhejiang or Jiangsu
provinces, suggesting that the reduction of primary PM2.5

emissions, especially the local ones, can significantly decrease
PM2.5 concentration in the YRD. Regardless of the source
sectors, reducing emissions in January achieved a greater
benefit in lowering the PM2.5 concentration, which is consis-
tent with previous reports (Li et al., 2014; Zhao et al., 2008,
2013b).

Fig. 6b further demonstrates the contributions of primary
PM2.5 emissions by sector to total primary PM2.5 changes.
Contributions of the total emissions from the industry and
domestic (IN&DO) sector have larger impacts on total primary
PM2.5 change than those from power plants (PP) and trans-
portation (TR) in both January and August. For Shanghai, the
PM2.5 emissions from IN&DO contribute up to 84% and 80%
of PM2.5 concentrations in January and August, respectively,
mainly attributed to the emissions from industrial combus-
tion, steel industry, domestic fossil-fuel and biomass com-
bustion (Zhao et al., 2013a).
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2.3. Application in air quality attainment assessments

The simulated PM2.5 concentrations in the base case (2010)
and their changes under three proposed scenarios in January
and August are given in Fig. 7. Fig. 7a and b shows the spatial
distribution of the monthly means of base-case PM2.5

concentrations in two months. Fig. 7a shows that the PM2.5

concentration in a large part of Shanghai exceeds 75 μg/m3 in
January. Compared to that of January, the air quality in
August was much better (Fig. 7b). This is mainly due to the
stronger advection and clean ocean air parcel introduced by
the Southeast Asia monsoon in summer (Dong et al., 2014;
Huang et al., 2014).

The simulation results based on three proposed control
scenarios show that: (1) controlling the local emissions of
Shanghai alone would obviously lower the PM2.5 concentration
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Shanghai (Fig. 7e, f). This is because the contributions of PM2.5

concentrations in the YRD are dominated by the primary PM2.5

emissions, which tend to deposit locally; (2) controlling the
emissions outside of Shanghai led to a limited improvement in
PM2.5 concentrations (Fig. 7c, d); and (3) controlling the
emissions in both Shanghai and its adjacent regions achieved
a satisfactory effect, as shown in Fig. 7g and h. Comparison of
these results shows that the governments of Shanghai and
the neighboring provinces need to coordinate their emission
reduction efforts to decrease the PM2.5 concentration.

The PM2.5 concentrations at each monitoring site in
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Table 3 – Results of out-of-sample validations in January and August (40 scenarios).

Performance metric January August

Mean Minimum Maximum Mean Minimum Maximum

MNB (%) −0.02% −0.77% 0.60% −0.18% −3.32% 1.26%
MNE (%) 0.15% 0.00% 0.78% 0.36% 0.00% 3.32%
MFB (%) −0.02% −0.78% 0.60% −0.18% −3.40% 1.25%
MFE (%) 0.15% 0.00% 0.78% 0.37% 0.00% 3.40%
NMB (%) −0.02% −0.87% 0.65% −0.21% −4.05% 1.56%
NME (%) 0.16% 0.00% 0.87% 0.42% 0.00% 4.05%

MNB: mean normalized bias; MNE: mean normalized error; NMB: normalized mean bias; NME: normalized mean error; MFB: mean fractional
bias; MFE: mean fractional error.
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concentration compared to emission control in nearby regions
(Case #1), with the exception of the backgroundmonitoring site
named Qingpudianshanhu (QPDSH). This is due to the fact that
the site is far from the urban areas of Shanghai and strongly
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in January. For example, the PM2.5 concentration of the Putuo
(PT) monitoring site reduced from 73.6 to 53.2 μg/m3,
accounting for 28% reduction of PM2.5 concentration in
January; while the same emission control percentage con-
tributed to 36% reduction of PM2.5 concentration in August,
suggesting that the PM2.5 in Shanghai is more significantly
affected by regional emissions in August compared to that in
January. This phenomenon is mainly caused by the significant
differences inmeteorological conditions. In August, Shanghai's
PM2.5 concentration is significantly influenced by the emissions
from the surrounding regions, because of the prevailing
wind conditions between sea and land (Liu et al., 2010).
However, due to the low wind speed and dry weather
meteorological conditions in January, the air quality of Shang-
hai has more tendency to be affected by the local emissions
(Zhao et al., 2008).

To assess the attainment of annual PM2.5 in Shanghai, the
average of the monthly mean PM2.5 in January and August
predicted by SMAT-CE was applied to represent the future
year annual average PM2.5 concentrations. The base-year and
future-year attainment results under three scenarios at all
the monitoring sites in Shanghai are shown in Fig. 9. Most of
the air quality data at these neighboring monitoring sites
were higher than the annual standard of 35 μg/m3. For
controlling the emissions in adjacent provinces, only one
background site located in the suburb of Shanghai meets the
annual NAAQS of PM2.5 (Fig. 9). One more monitoring site
could reach the attainment level by controlling local emis-
sions in Shanghai (Fig. 9). Controlling the emissions from
both local and adjacent provinces simultaneously was the
only control strategy to attain the air quality standard (Fig. 9).
This demonstrated why both local and regional emission
reductions were needed to control ambient PM2.5 in the study
areas.
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Fig. 7 – Monthly average PM2.5 in January (a) and August (b) 2010
proposed scenarios in January (c, e, g) and August (d, f, h).
3. Conclusions

This paper describes a novel RSM-Linear coupled fitting method
and a new functional module for preparing model data for
SMAT-CE application. The method grouped PM2.5 emissions into
two sources (precursors and primary PM2.5) and adopted different
algorithms for each source type. This coupled method signifi-
cantly decreased the number of dimensions required to establish
a response surface model, and more realistically captured the
response of PM2.5 to emission changes from both gaseous
precursors and primary PM2.5 with a reasonable number of
model simulations. The newly developed module
established a data link between the updated response
modeling tool and SMAT-CE. It had the ability to provide
streamlined model responses to emission control scenarios
for SMAT-CE using a simple interface.

We demonstrated a case study in the Yangtze River Delta
(YRD) to analyze the impacts on PM2.5 concentration and
estimate air quality attainment in Shanghai under three
proposed emission control scenarios as an application of
this streamlined system. The analysis of primary emission
impacts to PM2.5 helped policy makers identify the primary
sources contributing to PM2.5 in the YRD. The results
showed that primary emissions made a dominant contri-
bution to the ambient levels of PM2.5 in January and August.
The response of PM2.5 to primary emission changes was
much more sensitive in January than that in August. The
attainment assessment of PM2.5 in Shanghai showed that
PM2.5 concentration in Shanghai was predominantly influ-
enced by local emissions and significantly affected by those
emissions from the adjacent provinces. To meet the annual
PM2.5 standard, joint emission control efforts in both
local areas and neighboring provinces are required. The
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developed modeling tool serves as an efficient and stream-
lined science-based platform for identifying emission
sources leading to air pollution and for air quality attain-
ment assessments.
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